Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor

نویسندگان

  • Mi Sun Kim
  • Eun-Jung Lee
  • Jae-Won Kim
  • Ui Seok Chung
  • Won-Gun Koh
  • Ki Chang Keum
  • Woong Sub Koom
چکیده

PURPOSE Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. MATERIALS AND METHODS Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. RESULTS Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. CONCLUSION In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nanoparticles in radiation therapy: an old story yet mesmerizing

Radiotherapy (RT) is generally considered to be one of the most effective cancer treatments. The primary goal of RT is to accurately induce radiation damage to the tumor while limiting radiation toxicity to a level acceptable to normal tissue. This is accomplished by targeting the tumor with radiation. On the other hand, the status of RT procedures as they stand today is not substantial enough ...

متن کامل

A Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays

Background: To enhance the dose to tumor, the use of high atomic number elements has been proposed.Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs) in the tumor.Method...

متن کامل

Improvement of dose delivery with loading of tumor with gold nanoparticles in orthovoltage radiotherapy

Introduction: To enhance the dose to tumor, the use of high atomic number elements has been proposed. Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs)...

متن کامل

A systematic review of gold nanoparticles as novel cancer therapeutics

Objective(s):The current systematic study has reviewed the therapeutic potential of gold nanoparticles as nano radiosensitizers for cancer radiation therapy.   Materials and Methods: This study was done to review nano radiosensitizers. PubMed, Ovid Medline, Science Direct, SCOPUS, ISI web of knowledge, Springer databases were searched from 2000 to September 2013 to identify appropriate studies....

متن کامل

Megavoltage X-ray Dose Enhancement with Gold Nanoparticles in Tumor Bearing Mice

One of the applications of gold nanoparticles (GNPs) in medicine is radiation dose-enhancing effect. Although there are many simulations, in vitro and in vivo evidence that GNPs can enhance significantly the radiation dose effect of orthovoltage beams. These beams compared with megavoltage (MV) beams, have limited applications in radiotherapy. In order to evaluate GNPs radiosensitization perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2016